as follows

on a closed occurs at a the follow

nimum

imum e.

imum

-1,8]. By dinates do naximum the cursor is about estimates | let's use

; when

we see ute maxis a check Figure 13 shows the graph of the foodprice index function *I* of Example 7. This model is based on the data points

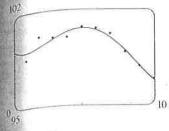


FIGURE 13

EXAMPLE 7 A model for the food-price index (the price of a representative "basket" of foods) between 1984 and 1994 is given by the function

$$I(t) = 0.00009045t^5 + 0.001438t^4 - 0.06561t^3 + 0.4598t^2 - 0.6270t + 99.33$$

where t is measured in years since midyear 1984, so $0 \le t \le 10$, and I(t) is measured in 1987 dollars and scaled such that I(3) = 100. Estimate the times when food was cheapest and most expensive during the period 1984–1994.

SOLUTION We apply the Closed Interval Method to the continuous function I on [0, 10]. Its derivative is

$$I'(t) = 0.00045225t^4 + 0.005752t^3 - 0.19683t^2 + 0.9196t - 0.6270$$

Since I' exists for all t, the only critical numbers of I occur when I'(t) = 0. We use a root-finder on a computer algebra system (or a graphing device) to find that I'(t) = 0 when $t \approx -29.7186$, 0.8231, 5.1309, or 11.0459, but only the second and third roots lie in the interval [0, 10]. The values of I at these critical numbers are

$$I(0.8231) \approx 99.09$$
 and $I(5.1309) \approx 100.67$

The values of I at the endpoints of the interval are

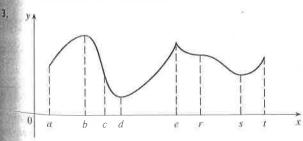
$$I(0) = 99.33$$
 $I(10) \approx 96.86$

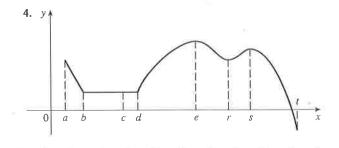
Comparing these four numbers, we see that food was most expensive at $t \approx 5.1309$ (corresponding roughly to August, 1989) and cheapest at t = 10 (midyear 1994).

4 2 Exe

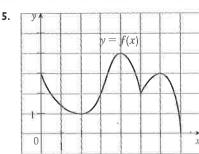
- Explain the difference between an absolute minimum and a local minimum.
- 2. Suppose f is a continuous function defined on a closed interval [a, b].
- (a) What theorem guarantees the existence of an absolute maximum value and an absolute minimum value for f?
- (b) What steps would you take to find those maximum and minimum values?

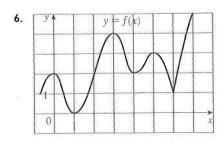
3-4 For each of the numbers a, b, c, d, e, r, s, and t, state whether the function whose graph is shown has an absolute maximum or minimum, a local maximum or minimum, or heither a maximum nor a minimum.





5-6 ■ Use the graph to state the absolute and local maximum and minimum values of the function.





7–10 Sketch the graph of a function f that is continuous on [0, 3] and has the given properties.

- 7. Absolute maximum at 0, absolute minimum at 3, local minimum at 1, local maximum at 2
- 8. Absolute maximum at 1, absolute minimum at 2
- 9. 2 is a critical number, but f has no local maximum or minimum
- 10. Absolute minimum at 0, absolute maximum at 2, local maxima at 1 and 2, local minimum at 1.5
- 11. (a) Sketch the graph of a function that has a local maximum at 2 and is differentiable at 2.

#G (# |# K1 8/ 19 (19/)

- (b) Sketch the graph of a function that has a local maximum at 2 and is continuous but not differentiable at 2.
- (c) Sketch the graph of a function that has a local maximum at 2 and is not continuous at 2.
- 12. (a) Sketch the graph of a function on [-1, 2] that has an absolute maximum but no local maximum.
 - (b) Sketch the graph of a function on [-1, 2] that has a local maximum but no absolute maximum.
- 13. (a) Sketch the graph of a function on [-1, 2] that has an absolute maximum but no absolute minimum.
 - (b) Sketch the graph of a function on [-1, 2] that is discontinuous but has both an absolute maximum and an absolute minimum.
- 14. (a) Sketch the graph of a function that has two local maxima, one local minimum, and no absolute minimum.
 - (b) Sketch the graph of a function that has three local minima, two local maxima, and seven critical numbers.

15-24 Find the absolute and local maximum and minimum values of f. Begin by sketching its graph by hand. (Use the graphs and transformations of Section 1.2.)

15.
$$f(x) = 1 + 2x$$
, $x \ge -1$

16.
$$f(x) = 1 - x^2$$
, $0 < x \le 1$

17.
$$f(x) = 1 - x^2$$
, $-2 \le x \le 1$

18.
$$f(t) = 1/t$$
, $0 < t < 1$

19.
$$f(\theta) = \sin \theta$$
, $-2\pi \le \theta \le 2\pi$

20.
$$f(\theta) = \tan \theta$$
, $-\pi/4 \le \theta < \pi/2$

21.
$$f(x) = x^5$$

22.
$$f(x) = 2 - x^4$$

23.
$$f(x) = 1 - e^{-x}, \quad x \ge 0$$

24.
$$f(x) = \begin{cases} x^2 & \text{if } -1 \le x < 0 \\ 2 - x^2 & \text{if } 0 \le x \le 1 \end{cases}$$

25-36 Find the critical numbers of the function.

25.
$$f(x) = 4x^3 - 9x^2 - 12x + 3$$

26.
$$f(t) = t^3 + 6t^2 + 3t - 1$$

27.
$$s(t) = t^4 + 4t^3 + 2t^2$$
 28. $g(x) = |x + 1|$

29.
$$f(r) = \frac{r}{r^2 + 1}$$

29.
$$f(r) = \frac{r}{r^2 + 1}$$
 30. $f(z) = \frac{z + 1}{z^2 + z + 1}$

31.
$$F(x) = x^{4/5}(x-4)^2$$

32.
$$G(x) = \sqrt[3]{x^2 - x}$$

$$33. f(\theta) = \sin^2(2\theta)$$

34.
$$g(\theta) = \theta + \sin \theta$$

35.
$$f(x) = x \ln x$$
 36. $f(x) = xe^{2x}$

35.
$$f(x) = x \ln x$$
 36. $f(x) = xe^{2x}$

37-46 Find the absolute maximum and absolute minimum values of f on the given interval.

37.
$$f(x) = x^2 - 2x + 2$$
, [0,3]

38
$$f(x) = x^3 - 12x + 1, [-3, 5]$$

39.
$$f(x) = 3x^5 - 5x^3 - 1$$
, [-2,2]

40.
$$f(x) = \sqrt{9 - x^2}$$
, $[-1, 2]$

41.
$$f(x) = x^2 + 2/x$$
, $\left[\frac{1}{2}, 2\right]$

42.
$$f(x) = \frac{x}{x+1}$$
, [1,2]

43.
$$f(x) = \sin x + \cos x$$
, $[0, \pi/3]$

44.
$$f(x) = x - 2\cos x$$
, $[-\pi, \pi]$

45.
$$f(x) = xe^{-x}$$
, [0, 2]

46.
$$f(x) = (\ln x)/x$$
, [1, 3]

47-50

- (a) Use a graph to estimate the absolute maximum and minimum values of the function to two decimal places,
- (b) Use calculus to find the exact maximum and minimum

47.
$$f(x) = x^3 - 8x + 1, -3 \le x \le 3$$

48.
$$f(x) = e^{x^3 - x}, -1 \le x \le 0$$

49.
$$f(x) = x\sqrt{x - x^2}$$

50.
$$f(x) = (\cos x)/(2 + \sin x), \ 0 \le x \le 2\pi$$

(E) (E) 4(E) (E) 25 (27) (27) (5) 51. Between 0°C and 30°C, the volume V (in cubic centimeters) of 1 kg of water at a temperature T is given